Übung zur Vorlesung "Sicherheit" Übung 5

Thomas Agrikola Thomas. Agrikola@kit.edu

06.07.2017

Socrative: Signaturen & Schlüsselaustausch

https://b.socrative.com/login/student/
Room: SICHERHEIT

- App um Quiz durchzuführen
- Zugang durch Browser oder App
- Als Quizteilnehmer kein Account notwendig.

Wiederholung ElGamal-Signaturen

$$a := g^e$$
 für zufälliges e
 b als Lösung von $a \cdot x + e \cdot b = M \mod |\mathbb{G}|$
 $\mathrm{Sign}(sk, M) = (a, b)$
 $\mathrm{Ver}(pk, M, \sigma) = 1 :\iff (g^x)^a a^b = g^M$

Möglicher Angriff:

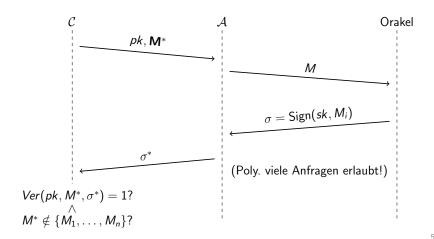
- $a := g^{x+c}$ für zufälliges $c \in \mathbb{Z}_{|\mathbb{G}|}$
- $b := -a \mod |\mathbb{G}|$
- $\sigma := (a, b)$ ist gültige Signatur für Nachricht

$$M = a \cdot x + e \cdot b = a \cdot x + (x + c) \cdot (-a) = -ac \mod |\mathbb{G}|$$

- ► Lehrbuch-RSA-Signaturen sind nicht EUF-CMA-sicher.
- Betrachte schwächeren Sicherheitsbegriff:
 - ▶ Wie EUF-CMA, aber...
 - ► Angreifer muss zu einer **vorgegebenen** Nachricht *m** eine Fälschung berechnen.
 - ► Angreifer darf keine Sign-Anfragen für *m** stellen.
- ► **Frage:** Erfüllen die Lehrbuch-RSA-Signaturen diesen Sicherheitsbegriff?

Sicherheit – Übungsblatt 5 – Neuer Sicherheitsbegriff

- ▶ Herausforderer C führt $(pk, sk) \leftarrow \text{Gen}(1^k)$ aus.
- $ightharpoonup \mathcal{C}$ stellt Sign(sk, \cdot)-Orakel für \mathcal{A} bereit.



Antwort: Lehrbuch-RSA-Signaturen erfüllen neuen Sicherheitsbegriff nicht!

Betrachte folgenden Angreifer A:

- ▶ \mathcal{A} erhält den PK $(e, N = P \cdot Q)$ (P, Q prim) und $m^* \in \mathbb{Z}_N$.
- ► Annahme: *m** ist invertierbar
 - ▶ Ist *m** nicht invertierbar, so gilt

$$ggT(m^*, N) = P \vee ggT(m^*, N) = Q$$

und wir könnten N faktorisieren...

- .. und damit auch leicht Signaturen fälschen.
- ▶ Ziel: berechne σ^* mit $(\sigma^*)^e = m^*$ mod N
- $ightharpoonup \mathcal{A}$ zieht $x \leftarrow \mathbb{Z}_N^{\times} \setminus \{1\} \dots$
- ... und berechnet $y := x^e \mod N$.

- ▶ Beobachtung: $y = x^e \neq 1 \mod N$ (für $x \in \mathbb{Z}_N^{\times} \setminus \{1\}$)
 - Angenommen $x^e = 1 \mod N$, dann ist e ein Vielfaches der Ordnung von x.
 - ▶ Wegen Lagrange: $\varphi(N) = m \cdot ord(x)$.
 - ▶ Also $ggT(e, \varphi(N)) = k \cdot ord(x)$ für ein $k \in \mathbb{N}$.
 - ▶ Nach Voraussetzung gilt aber $ggT(e, \varphi(N)) = 1$.
 - ▶ Das geht nur, wenn ord(x) = 1 also x = 1 ist, aber $x \neq 1$. Widerspruch.
- \mathcal{A} setzt $m_1 := m^* \cdot y \mod N$.
- ▶ $m_1 \neq m^* \mod N$, da $y \neq 1 \mod N$ und m^* invertierbar.
- \mathcal{A} schickt m_1 an das Sign-Orakel und erhält σ_1 .
- ▶ Er gibt $\sigma^* = \sigma_1 \cdot x^{-1} \mod N$ als Fälschung aus.
- $(x^{-1} \text{ existiert, da } x \in \mathbb{Z}_N^{\times})$

 σ^* ist eine gültige Fälschung, denn es gilt:

$$(\sigma^*)^e = (\sigma_1 \cdot x^{-1})^e \mod N$$

$$= \sigma_1^e \cdot (x^e)^{-1} \mod N$$

$$= m_1 \cdot y^{-1} \mod N$$

$$= (m^* \cdot y) \cdot y^{-1} \mod N$$

$$= m^* \mod N$$

- ► Erfolgswkt. = 1
- Laufzeit: Polynomiell (simple Berechnungen, nur eine Sign-Anfrage)

Fazit:

- Lehrbuch-RSA-Signaturen erfüllen auch schwache Sicherheitsbegriffe nicht.
- ► Sicherheitsbegriff: UUF-CMA (universally unforgeable...)
- ► Problem: Homomorphie
- ⇒ Lehrbuch-RSA-Signaturen nicht verwenden!

Digital-Signature-Algorithmus (DSA) über $\mathbb{G}=Q(\mathbb{Z}_p^{\times})$, für ungerades primes $p\in\mathbb{N}$.

- $lackbox{ }Q(\mathbb{Z}_p^{ imes}):=\{x^2:x\in\mathbb{Z}_p^{ imes}\}$ ist Menge der Quadrate in $\mathbb{Z}_p^{ imes}$.
- ▶ $Q(\mathbb{Z}_p^{\times})$ ist eine Untergruppe von \mathbb{Z}_p^{\times} .
- Es sei p = 2q + 1 mit q = 11 (Erinnerung, diese Primzahlen nennt man Safe Primes (oder auch Strong Primes).

Erinnerung:

▶ Sign(sk, M) $\rightarrow \sigma := (a, b)$ $a = g^e$ für zuf. $e \leftarrow \mathbb{Z}_{|\mathbb{G}|}$ berechne $b \in \mathbb{Z}_q$, sodass $a \cdot x + e \cdot b = H(M)$ mod $|\mathbb{G}|$

- (a) Berechnen Sie
 - einen DSA-Public-Key $pk := (\mathbb{G}, g, g^x, (H, h_1, h_2))$, sowie
 - ▶ den DSA-Secret-Key $sk := (\mathbb{G}, g, x, (H, h_1, h_2))$

Wir verwenden die folgende Hashfunktion:

$$\mathsf{H}: \quad \mathbb{Z}_q imes \mathbb{Z}_q o \mathbb{Z}_q^{ imes} \ (x_1, x_2) \mapsto h_1^{ imes_1} h_2^{ imes_2} mod q$$

Für
$$p=2q+1=23$$
 ergibt sich:
$$\mathbb{G}:=Q(\mathbb{Z}_{23}^{\times})=\{1,2,3,4,6,8,9,12,13,16,18\}.$$
 $|\mathbb{G}|=11.$

▶ Ziehe $x \leftarrow \{0, ..., q - 1\}$, z.B. x := 10.

Vorgegeben waren:

- ▶ g := 8
- $h_1 := 4$
- $h_2 := 2$

Fehlt noch: g^x

Wir berechnen

$$g^{x} = 8^{10} \mod 23$$

 $= (8^{2})^{4} \cdot 8^{2} \mod 23$
 $= (64)^{4} \cdot 64 \mod 23$
 $= (18)^{4} \cdot 18 \mod 23$
 $= (-5)^{4} \cdot 18 \mod 23$
 $= (2)^{2} \cdot 18 \mod 23$
 $= 4 \cdot (-5) \mod 23$
 $= -20 \mod 23$
 $= 3 \mod 23$

Damit ergibt sich insgesamt:

$$\begin{aligned} pk &= (Q(\mathbb{Z}_{23}^{\times}), 8, 3, (\mathsf{H}, 4, 2)) \\ sk &= (Q(\mathbb{Z}_{23}^{\times}), 8, 10, (\mathsf{H}, 4, 2)) \end{aligned}$$

Signieren Sie die Nachricht M = (7,3) mithilfe des Secret-Keys aus (a).

- ▶ Wähle $e \leftarrow \{0, ..., q 1\}$, z.B. e := 5.
- Berechne

$$a := g^e \mod p$$

$$= 8^5 \mod 23$$

$$= 8^4 \cdot 8 \mod 23$$

$$= (64)^2 \cdot 8 \mod 23$$

$$= (-5)^2 \cdot 8 \mod 23$$

$$= 2 \cdot 8 \mod 23$$

$$= 16 \mod 23$$

Als Hashwert ergibt sich:

$$H(M) = H(7,3)$$

= $h_1^7 h_2^3 \mod 11$
= $4^7 2^3 \mod 11$
= ...
= 7 mod 11.

Löse Gleichung nach b:

$$ax + eb = H(M) \mod q$$
 $16 \cdot 10 + 5 \cdot b = 7 \mod 11$
 $-5 + 5 \cdot b = 7 \mod 11$
 $5 \cdot b = 1 \mod 11$
 $b = 5^{-1} = 9 \mod 11$

Die Signatur zur Nachricht
$$M=(7,3)$$
 lautet $\sigma:=(a,b)=(16,9).$

Verifizieren Sie die Signatur zur Nachricht M aus (b) mittels des Public-Keys aus (a).

Erinnerung:

```
ightharpoonup \ {\sf Ver}(pk,M,\sigma): prüfe, ob  (g^x)^a \cdot a^b = g^{H(M)} gilt.
```

Die Signatur ist $\sigma = (16, 9) =: (a, b)$. Überprüfe, ob

$$(g^{x})^{a} \cdot a^{b} \mod p = g^{\mathsf{H}(M)} \mod p.$$

Es ergibt sich

$$(g^x)^a \cdot a^b = 3^{16} \cdot 16^9 \mod 23$$

= 12 mod 23,

sowie:

$$g^{H(M)} = 8^7 \mod 23$$

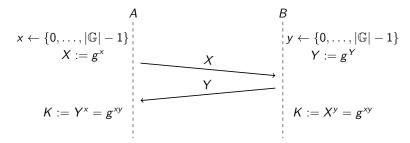
= 12 mod 23.

 \Rightarrow Signatur gültig.

Fazit:

- DSA Teil des Digital-Signature-Standards, gilt z.B. für US-Behörden.
- Als mögliche Hashfkts. werden dort Algorithmen der SHA-Familie empfohlen.

Betrachten Sie den Diffie-Hellman-Schlüsselaustausch in \mathbb{G} :



Es seien

- $lackbox{} \mathbb{G} = Q(\mathbb{Z}_p^{ imes})$ (also Untergruppe von $\mathbb{Z}_p^{ imes}$),
- ▶ p = 23,
- g = 18,
- ► x = 6,
- ▶ y = 8.

Zusatzinfo: $|\mathbb{G}| = 11$

Berechnen Sie X, Y, K.

$$X = g^x \mod 23$$

= $18^6 \mod 23$
= $((-5)^2)^3 \mod 23$
= $25^3 \mod 23$
= $2^3 \mod 23$
= $8 \mod 23$

$$Y = g^y \mod 23$$

= $18^8 \mod 23$
= $((-5)^2)^4 \mod 23$
= $2^4 \mod 23$
= $16 \mod 23$

$$K = g^{xy} \mod 23$$

= $18^{48} \mod 23$
= $18^{48 \mod 11} \mod 23$
= $(-5)^4 \mod 23$
= $2^2 \mod 23$
= $4 \mod 23$

- lacktriangle Wir verwenden, dass $18 \in \mathbb{G}$ und $|\mathbb{G}| = 11$
- Wir könnten auch mit der Ordnung der Obergruppe (\mathbb{Z}_{23}^{\times} , Ordnung 22) arbeiten.

Alice und Bob würden K natürlich als X^y mod 23 bzw. als Y^x mod 23 berechnen.

Geg.: 2-Parteien-2-Nachrichten-Schlüsselaustauschverf. KE:

KE.Gen(1^k): Gibt State s und X aus (X ist erste Nachricht im Schlüsselaustausch).

KE.Encap(X): Gibt Y und K aus (Y ist zweite Nachricht im Austausch).

KE.Decap(s, Y): Gibt einen Schlüssel K' aus.

Korrektheit: $\forall k \in \mathbb{N}$, $\forall (s, X) \leftarrow \mathsf{KE}.\mathsf{Gen}(1^k)$ gilt für

- ▶ $(K, Y) \leftarrow KE.Encap(X)$, dass
- ightharpoonup KE.Decap(s, Y) = K.

Diffie-Hellman so geschrieben:

$$\mathsf{KE}.\mathsf{Gen}(1^k)$$
: $s := x \leftarrow \mathbb{Z}_p$, $X := g^x$

 $\mathsf{KE}.\mathsf{Encap}(X)$: Zieht $y \leftarrow \mathbb{Z}_p$

$$K = X^y = g^{xy}$$

$$Y = g^y$$

 $\mathsf{KE.Decap}(s,Y)$: Berechnet $K':=Y^s=Y^x=g^{xy}$.

Aufgabe: Konstruieren Sie

 ein Public-Key-Verschlüsselungsverfahren
 PKE = (PKE.Gen, PKE.Enc, PKE.Dec) aus dem Schlüsselaustauschverfahren KE.

Hinweis: Denken Sie an die Beziehung zwischen DH-Schlüsselaustausch und ElGamal-Verschlüsselungsverfahren

Schlüsselerzeugung PKE. $Gen(1^k)$:

- ▶ Ziehe $(s, X) \leftarrow KE.Gen(1^k)$
- ightharpoonup Setze pk := X
- ▶ Setze *sk* := *s*
- ▶ gib (pk, sk) aus

Diffie-Hellman/ElGamal:

- ▶ DH: s = x, $X = g^x$
- ▶ ElGamal: sk = x, $pk = g^x$

Verschlüsselung PKE.Enc(pk, M):

- ▶ Berechne $(Y, K) \leftarrow KE.Encap(pk)$.
- $ightharpoonup C := (Y, K \oplus M).$
- ▶ gib *C* aus.

Diffie-Hellman/ElGamal:

- ▶ DH: ziehe y, $Y := g^y$, $K = g^{xy}$
- ▶ ElGamal: ziehe y, $C := (g^y, g^{xy} \cdot M)$

Entschlüsselung PKE. $Dec(sk, C = (C_1, C_2))$:

- ▶ $C_1 = Y$, $C_2 = K \oplus M$, sk = s
- $ightharpoonup K' := KE.Decap(sk, C_1) = KE.Decap(s, Y)$
- $M := C_2 \oplus K'$
- Korrektheit folgt aus Korrektheit von KE (K = K')

Diffie-Hellman/ElGamal:

- ▶ DH: erhalte Y, $K' = Y^x = g^{xy}$
- ▶ ElGamal: $M = C_2/C_1^x = (g^{xy} \cdot M)/g^{xy}$

Fazit:

- Zusammenhang zwischen Schlüsselaustausch und Verschlüsselung
- Sicherheit noch unklar
 - Sicherheitsdef. für Schlüsselaustausch wurde in VL aber auch nicht besprochen!

Socrative: CRIME

https://b.socrative.com/login/student/
Room: SICHERHEIT

- App um Quiz durchzuführen
- Zugang durch Browser oder App
- Als Quizteilnehmer kein Account notwendig.

Doktor Meta Aufgabe (Story siehe Blatt)

- ► Theoretische und praktische Untersuchung von CRIME
- Angriff auf TLS
- Nutzt aus, dass Klartexte vor der Verschlüsselung komprimiert werden

- ► PKE = (Gen, Enc, Dec) IND-CPA-sicher.
- \blacktriangleright Zu PKE ist PPT $\mathcal L$ bekannt, sodass für alle M

$$\Pr\left[\mathcal{L}(pk,C) = |M| \mid (pk,sk) \leftarrow \operatorname{Gen}(1^k), C \leftarrow \operatorname{Enc}(pk,M)\right]$$
 gleich 1.

- gielei 1.
- ▶ D.h. £ kann die Länge des Klartextes in einem Chiffrat bestimmen.
- $ightharpoonup \mathcal{C} = (\mathsf{Comp}, \mathsf{Decomp})$ Kompressionsalgorithmus
 - ▶ |M| = |M'| bedeutet nicht |Comp(M)| = |Comp(M')|!
 - Redundante Nachrichten werden stärker komprimiert.

Es sei nun PKE' = (Gen', Enc', Dec') gegeben durch:

- $\operatorname{\mathsf{Gen}}'(1^k) = \operatorname{\mathsf{Gen}}(1^k)$
- Enc'(pk, M) = Enc(pk, Comp(M))

Zeigen Sie: PKE' ist nicht IND-CPA-sicher.

Betrachte folgenden PPT A:

- $ightharpoonup \mathcal{A}$ erhält pk und wählt M_0 , M_1 mit
 - $|M_0| = |M_1|$, aber
 - $|\mathsf{Comp}(M_0)| \neq |\mathsf{Comp}(M_1)|.$
- \triangleright A schickt M_0 , M_1 als Challenge.
- ▶ \mathcal{A} erhält C^* und führt $\mathcal{L}(pk, C^*) =: x$ aus.
- ► Er überprüft, ob $x = |Comp(M_0)|$, wenn ja, gib 0 aus, sonst...
- ... überprüfe, ob $x = |\mathsf{Comp}(M_1)|$, wenn ja, gib 1 aus, sonst...
- gib ein zufälliges Bit aus.

Sei $\mathcal E$ das Ereignis, dass $\mathcal L$ die Länge des Klartextes in C^* richtig bestimmt. Dann ist:

$$\begin{split} \Pr[\mathcal{A} \text{ gew.}] &= \Pr[(\mathcal{A} \text{ gew.} \wedge \mathcal{E}) \vee (\mathcal{A} \text{ gew.} \wedge \overline{\mathcal{E}})] \\ &= \Pr[\mathcal{E}] \Pr[\mathcal{A} \text{ gew.} \mid \mathcal{E}] + \Pr[\overline{\mathcal{E}}] \Pr[\mathcal{A} \text{ gew.} \mid \overline{\mathcal{E}}] \\ &= 1 \cdot \Pr[\mathcal{A} \text{ gew.} \mid \mathcal{E}] + 0 \\ &= 1. \end{split}$$

 $1 - \frac{1}{2} = \frac{1}{2}$ ist nicht vernachlässigbar, d.h. PKE' ist nicht IND-CPA-sicher.

Sei nun

$$\Pr[\mathcal{L}(pk,C) = |M| \mid \dots] = 1 - f(k)$$

mit f vernachlässigbar in k.

$$\begin{aligned} \Pr[\mathcal{A} \text{ gew.}] &= \Pr[\mathcal{E}] \Pr[\mathcal{A} \text{ gew.} \mid \mathcal{E}] + \Pr[\overline{\mathcal{E}}] \Pr[\mathcal{A} \text{ gew.} \mid \overline{\mathcal{E}}] \\ &\geq \Pr[\mathcal{E}] \cdot \Pr[\mathcal{A} \text{ gew.} \mid \mathcal{E}] \\ &= (1 - f(k)) \cdot 1 \\ &= 1 - f(k) \end{aligned}$$

Der Vorteil von $\mathcal A$ gegenüber Raten ist also mindestens

$$g(k) := 1 - f(k) - \frac{1}{2} = \frac{1}{2} - f(k).$$

Frage: Ist g(k) := frac12 - f(k) nicht vernachlässigbar? **Antwort:** Ja!

- ▶ Für $k \to \infty$ gehen vernachlässigbare Funktionen gegen 0.
- Aber:

$$\lim_{k\to\infty} g(k) = \lim_{k\to\infty} 1/2 - f(k) = 1/2 \neq 0$$

Also kann g(k) nicht vernachlässigbar sein.

Achtung:

► Um zu zeigen, dass eine Funktion f vernachlässigbar ist, genügt es <u>nicht</u> zu zeigen, dass sie gegen Null geht!

Sicherheit – Übungsblatt 5 – CRIME

- Szenario: Client hat geheimes HTTP-Cookie, das Browser automatisch an alle Nachrichten an Server anhängt. (Diese Nachrichten sind verschlüsselt.)
- Ziel: Session-Cookie herausfinden.
- Angreifer bringt Browser des Client dazu Nachrichten der Form 'Cookie: ...' an Server zu senden, die er dann abfängt.
 - Eine vom Client an den Server gesendete Nachricht sieht dann so aus (vereinfacht)

 $\mathsf{POST} \ / \ \mathsf{HTTP}/1.1 \backslash \mathsf{r} \backslash \mathsf{n}$

Host: $host.edu\r\n$

Cookie: cookie_data\r\n

Cookie: ...

Sicherheit – Übungsblatt 5 – CRIME

- Der Angreifer fängt die Chiffrate ab und kann daraus erkennen, welche Länge die (komprimierte) gesendete Nachricht hat.
- ▶ Ist die Länge 'besonders klein', gehen wir davon aus, dass unser gewählter String 'Cookie: ...' zu viel Redundanz geführt hat.
- ⇒ Auf diese Weise können wir den Cookie Zeichen für Zeichen herausfinden.

Fazit:

- Problem: Chiffrate können Nachrichtenlänge nicht verstecken.
 - ► Für Angriff/Problem muss nicht unbedingt die exakte Nachrichtenlänge ablesbar sein
 - Es genügt, wenn verschieden lange Nachrichten zu verschieden langen Chiffraten führen.
- Komprimierung & Verschlüsselung verträgt sich nicht
 - ► Klartext komprimieren → Angriff
 - Chiffrat komprimieren führt zu schlechter Kompression, da wenig Redundanz